
Компьютерные технологии 
в научных исследованиях

Национальный исследовательский университет «МИЭТ»

Кафедра ПКИМСМИЭТ

Семинар №7

Язык Python. Основные сведения



pip freeze: получение списка пакетов в формате «requirements»

bashplotlib==0.6.5
certifi==2022.12.7
charset-normalizer==3.0.1
click==8.1.3
colorama==0.4.6
cycler==0.11.0
fonttools==4.29.1
graphviz==0.19.1
idna==3.4
imgui==1.4.1
kiwisolver==1.3.2
matplotlib==3.5.1
mypy==0.931
mypy-extensions==0.4.3
numpy==1.22.2
opencv-python==4.5.5.64
packaging==21.3

Pillow==9.0.1
progress==1.6
PTable==0.9.2
PyOpenGL==3.1.6
pyparsing==3.0.7
PyQt5==5.15.7
PyQt5-Qt5==5.15.2
PyQt5-sip==12.11.0
PySDL2==0.9.11
pysdl2-dll==2.0.20
PySimpleGUI==4.60.4
python-dateutil==2.8.2
requests==2.28.2
six==1.16.0
tk==0.1.0
tomli==2.0.1
typing_extensions==4.1.1
urllib3==1.26.14



pip install: установка заданного перечня пакетов

C:\Users\Дмитрий Булах>pip freeze > requirements.txt

C:\Users\Дмитрий Булах>pip install -r requirements.txt



Виртуальное окружение в Python: создание

C:\Users\Дмитрий Булах>python -m venv ve1



Виртуальное окружение в Python: активация

C:\Users\Дмитрий Булах>ve1\Scripts\activate.bat



Виртуальное окружение в Python: работа с venv



Виртуальное окружение в Python: выход



Типы данных в Python

В Python есть несколько стандартных типов данных:

• числа (Numbers)

 целые (Integers)

вещественные (Real)

комплексные (Complex)

• строки (Strings)

• списки (Lists)

• множества (Sets)

• кортежи (Tuples)

• словари (Dictionaries)

• логический тип данных (Boolean)

Эти типы данных можно, в свою очередь, 

классифицировать по нескольким признакам:

• изменяемые (списки, словари и множества)

• неизменяемые (числа, строки и кортежи)

• упорядоченные (списки, кортежи, строки и словари)

• неупорядоченные (множества)

x = 42
print(f' value: {x} of type {type(x)}')

value: 42 of type <class 'int'>



Что значит, что тип int – неизменяемый? (1)

int main() {

int x = 4;

std::cout << "x = " << x << ", addr of x = " << &x << std::endl;

return 0;
}

x = 5;

std::cout << "x = " << x << ", addr of x = " << &x << std::endl;



Что значит, что тип int – неизменяемый? (1)



Операции с целыми числами

Операция Результат

-x Смена знака

x + y Сумма двух чисел

x - y Разность двух чисел

x * y Произведение двух чисел

x / y Частное чисел

x // y Целая часть от деления

x % y Остаток от деления

x ** y Возведение x в степень y, 𝑥𝑦

#!/usr/bin/python

x = 5
y = 3

print(5 / 3)
print(5 // 3)
print(5 % 3)
print(5 ** 3)

1.6666666666666667
1
2
125



Декораторы Python (1)

class Rectangle:
def __init__(self, a, b):

self.a = a
self.b = b

def area(self):
return self.a * self.b

rect = Rectangle(5, 6)
print(rect.area())

class Rectangle:
def __init__(self, a, b):

self.a = a
self.b = b

@property
def area(self):

return self.a * self.b

rect = Rectangle(5, 6)
print(rect.area)

print(rect.area)

<bound method Rectangle.area of <__main__.Rectangle object at 0x0000022E074236D0>>



Декораторы Python (2)

def decorator_function(func):
def wrapper():

print('Функция-обёртка!')
    print(f'Оборачиваемая функция: {func}')

print('Выполняем обёрнутую функцию...')
    func()

print('Выходим из обёртки')
  return wrapper

def hello_world():
print('Hello world!')

hello_world()

Hello world!

@decorator_function
def hello_world():

print('Hello world!')

hello_world()

Функция-обёртка!
Оборачиваемая функция: <function hello_world at 0x000001D7E1CC89A0>
Выполняем обёрнутую функцию...
Hello world!
Выходим из обёртки



Декораторы Python (3)

class Circle:
def __init__(self, radius):

self._radius = radius

def get_radius(self):
return self._radius

def set_radius(self, value):
self._radius = value

property([fget=None, fset=None, fdel=None, doc=None])

radius = property(
fget = get_radius,
fset = set_radius,
doc  = 'The radius property'

)

circle = Circle(42.0)
circle.radius = 15.6
print(f'Радиус = {circle.radius}')



Декораторы Python (4)

class Circle:
def __init__(self, radius):

self._radius = radius

def get_radius(self):
return self._radius

def set_radius(self, value):
self._radius = value

radius = property(
fget = get_radius,
fset = set_radius,
doc  = 'The radius property'

)

class Circle:
def __init__(self, radius):

self._radius = radius

@property
def radius(self):

return self._radius

@property.setter
def radius(self, value):

self._radius = value



Синтаксис языка Python: аннотирование типов данных (1)

def RequestGroundH(sensorId : int) -> float:
"""
Функция посылает запрос типа GETдля получения значения влажности почвы

  URL для запроса: https://dt.miet.ru/ppo_it/api/hum/<number>
Вход : (int) номер датчика в диапазоне [1..6]

  Выход: (int, int) значения температуры и влажности воздуха
  """
  ret = requests.get(f'https://dt.miet.ru/ppo_it/api/hum/{sensorId}')

print(f'Status: {ret.status_code} Answer: {ret.text}')
json_code = json.loads(ret.text)
return (float(json_code['humidity']))



Синтаксис языка Python: аннотирование типов данных (2)

class Rectangle:
def __init__(self, a : int, b : int):
self.a = a
self.b = b

@property
def area(self) -> int:
return self.a * self.b

rect = Rectangle(4, 6)
print(rect.area)

rect = Rectangle(4, 6.8)
print(rect.area)

mypy code.py



Модули в Python: graphviz

digraph {
a -> b
a -> b
a -> c

}

Язык DOT

from graphviz import Digraph

graph = Digraph()

graph.edge('a', 'b')
graph.edge('a', 'b')
graph.edge('a', 'c')

graph.render('result.dot', format='png', view=True)

Язык Python и библиотека graphviz



Модули в Python: numpy

import numpy as np

a = np.array([1, 2, 3])

Создание массива по диапазону:

a = np.arange(0, 10, 1)
a = np.arange(0, 1, 0.1)

Создание массива по диапазону и числу разбиений:

a = np.linspace(0, 2, 7)



Модули в Python: matplotlib

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 4*np.pi, 0.1)
y = np.sin(x)

plt.xlabel('x')
plt.ylabel('sin(x)')
plt.plot(x, y, 'ro')
plt.show()



Модули в Python: работа с Excel

import pandas as pd

df = pd.read_excel('file.xlsx')

cell_value = df.iloc[0, 0]
print(f"The value in cell C9 is: {cell_value}")

import openpyxl

workbook = openpyxl.load_workbook(filename='file.xlsx')

sheet = workbook.active

cell_value = sheet['A1'].value
print(f"Value in A1: {cell_value}")



Модули в Python: работа с Word

from docx import Document

document = Document('document.docx')

print("Paragraphs:")
for para in document.paragraphs:

print(para.text)

print("\nTables:")
for table in document.tables:

for row in table.rows:
print("|".join(cell.text for cell in row.cells))



Модули в Python: click

import click

@click.command()
@click.argument('num', type=int)
@click.option('--arg', type=int, help='Simple arg')
@click.option('--enable', is_flag=True)
def main(num, arg, enable):
print(f'Num : {num} of type {type(num)}')
print(f'Arg : {arg} of type {type(arg)}')
print(f'Enable : {enable}')

if __name__ == '__main__':
main()



Модули в Python: colorama

from colorama import Fore, Back

def main():
print(Fore.RED + 'Error!')
print(Back.GREEN + Fore.YELLOW + 'Hello World!')

if __name__ == '__main__':
main()



Модули в Python: PrettyTable

from prettytable import PrettyTable

def main():
pt = PrettyTable()
pt.field_names = ['No.', 'Student', 'Group', 'Rating']

pt.add_row([1, 'Ivanov', 'EN-24', '87'])
pt.add_row([2, 'Petron', 'EN-24', '74'])
pt.add_row([3, 'Sidorov', 'EN-24', '92'])
pt.add_row([3, 'DlinnayaFamiliya', 'EN-24', '92'])

print(pt)

if __name__ == '__main__':
main()



Модули в Python: PyQt5

import sys
from PyQt5.QtWidgets import QApplication, QWidget

if __name__ == '__main__':

app = QApplication(sys.argv)

win = QWidget()
win.resize(250, 150)
win.move(300, 300)
win.setWindowTitle('Simple')
win.show()

sys.exit(app.exec_())

#include <QApplication>
#include <QWidget>

int main(int argc, char *argv[]) {
QApplication app(argc, argv);

  QWidget *win = new QWidget;
win->resize(250, 150);
win->move(300, 300);
win->setWindowTitle("Simple");
win->show();

return app.exec();
}



Модули в Python: wxPython

import wx

class Example(wx.Frame):
def __init__(self, title):

super(Example, self).__init__(None, title=title, 
                                            size=(300, 200))

self.Move((800, 250))

def main():
app = wx.App()
ex = Example(title='Тест xwPython')
ex.Show()
app.MainLoop()

if __name__ == '__main__':
main()



Модули в Python: tkInter
import tkinter as tk

window = tk.Tk()
window.title("Заголовок")
window.resizable(True, False)
window.geometry("300x250+10+10")

l1 = tk.Label(window, text="Synopsys", bg="#FFB857")
l1.pack(fill='x')
l2 = tk.Label(window, text="Cadence", bg="#8EC2C9")
l2.pack(fill='x')
l3 = tk.Label(window, text="Siemens", bg="#FF7182")
l3.pack(expand='yes')

l1 = tk.Label(window, text="Menu bar", bg="#FFB857")
l1.pack(fill='x')
l2 = tk.Label(window, text="Toolbar", bg="#8EC2C9")
l2.pack(fill='x')
l3 = tk.Label(window, text="Solution browser", bg="#FF7182")
l3.pack(side='left', fill='y')
l4 = tk.Label(window, text="Code", bg="#71EC82")
l4.pack(expand='yes', fill='both')



Модули в Python: pySimpleGui

import PySimpleGUI as sg

layout = [
[sg.Text("Пример на PySimpleGui")],
[sg.Input()],
[sg.Button('Ok'), sg.Button('Quit')]

]

window = sg.Window('Окно', layout)

while True:
event, values = window.read()

if event == sg.WINDOW_CLOSED:
break

window.close()



Модули в Python: MyHDL

from myhdl import *

@block
def inv(x, y):

@always(x)
def logic():

y.next = not x

return logic

module inv(x, y);

input x;
output y;

always@(x)  
y = ~x;

endmodule

entity inv is
port(x: in bit;

y: out bit);
end inv;

architecture BEH of inv is
begin
process(x)
begin
y <= not x;

end process;
end RTL;



Модули в Python: OpenCV


	Слайд 1, Компьютерные технологии в научных исследованиях
	Слайд 2, pip freeze: получение списка пакетов в формате «requirements»
	Слайд 3, pip install: установка заданного перечня пакетов
	Слайд 4, Виртуальное окружение в Python: создание
	Слайд 5, Виртуальное окружение в Python: активация
	Слайд 6, Виртуальное окружение в Python: работа с venv
	Слайд 7, Виртуальное окружение в Python: выход
	Слайд 8, Типы данных в Python
	Слайд 9, Что значит, что тип int – неизменяемый? (1)
	Слайд 10, Что значит, что тип int – неизменяемый? (1)
	Слайд 11, Операции с целыми числами
	Слайд 12, Декораторы Python (1)
	Слайд 13, Декораторы Python (2)
	Слайд 14, Декораторы Python (3)
	Слайд 15, Декораторы Python (4)
	Слайд 16, Синтаксис языка Python: аннотирование типов данных (1)
	Слайд 17, Синтаксис языка Python: аннотирование типов данных (2)
	Слайд 18, Модули в Python: graphviz
	Слайд 19, Модули в Python: numpy
	Слайд 20, Модули в Python: matplotlib
	Слайд 21, Модули в Python: работа с Excel
	Слайд 22, Модули в Python: работа с Word
	Слайд 23, Модули в Python: click
	Слайд 24, Модули в Python: colorama
	Слайд 25, Модули в Python: PrettyTable
	Слайд 26, Модули в Python: PyQt5
	Слайд 27, Модули в Python: wxPython
	Слайд 28, Модули в Python: tkInter
	Слайд 29, Модули в Python: pySimpleGui
	Слайд 30, Модули в Python: MyHDL
	Слайд 31, Модули в Python: OpenCV

